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We derive asymptotic expressions for the complex temperature plane zeros of 
the infinite-range Ising model in the scaling regime. The results also apply to 
high-dimensional, short-range Ising systems. For the nth zero in a system of N 
spins, the leading asymptotic result is t~ ~ (n/N)t /2(-1 +_. i). 
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1. I N T R O D U C T I O N  

Recent successful attempts by several groups ~1 3) to develop e expansions 
for finite-size systems have renewed interest in the infinite-range Husimi- 
Temperley model (for review see Ref. 4). Indeed, the infinite-range model 
provides the zeroth-order (t'2) "mean-field approximation" appropriate for a 
finite system (of fixed shape). For definiteness, let us consider the nearest 
neighbor Ising model on the d-dimensional hypercubic lattice, 

- f lH=K~s,s j ,  K>0 ,  si=_+l (1.l) 
n . n .  

It has been realized ~1-3) that only the zero-momentum Fourier component 
of the order parameter need be kept for an asymptotic description of the 
critical behavior of a finite system in d>4 ,  provided periodic boundary 
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conditions are imposed in all directions. In the lattice version (1.1), this 
amounts to the replacement 

sisj--* ~i~= 1 si (1.2) 

where N is the total number of spins. Since the total number of the n.n. 
pairs is dN, the appropriate infinite-range interaction is 

--3HMF=- K , s ,  (1.3) 

One c a n  s h o w  (4) that the partition function of this model is proportional to 

ZN(K ) = d~ e x p { N [ -  dKg 2 + In cosh(2dK/J)] } (1.4) 

and that the bulk phase transition occurs at K~. = 1/2d. 
Our aim is to calculate the location of the complex temperature plane 

zeros of the partition function (1.4). Study of the complex-temperature 
zeros was initiated by Fisher, (5) who emphasized the analogy with the 
Yang-Lee zeros (6'7) in the complex magnetic field plane. Later studies of 
the complex temperature zeros are reviewed in Ref. 8. There is no strict 
Yang-Lee theorem in the temperature plane; however, Itzykson et al. (9) 
discovered an asymptotic property of equal importance. Provided that the 
zeros accumulate at Tc along a complex conjugate pair of lines, these lines 
form an angle ~ with the negative real axis that is an explicitly known 
universal function of the critical exponent ~ and the specific heat amplitude 
ratio. Here it suffices to quote (9) 

~gMF =45 ~ (1.5) 

Note that the formation of a line of zeros is a likely but not general feature: 
at least one counterexample is rigorously known. ~176 

In mean-field type models, the locus of zeros can be found (9) by con- 
sidering the behavior of the bulk partition function for complex tem- 
peratures. Specifically, the prediction (1.5) has been confirmed for the 
Bethe lattice. Another obvious line of attack is to solve for zeros 
numerically for small N. Caliri and Mattis {12) reported calculations up to 
N=25 .  

Our program is more ambitious. We will actually calculate the 
location of an unbounded number of zeros in the critical region, for large 
N. The underlying scaling analysis of the partition function of the infinite- 
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range model, along with the results, are presented in Section 2. Related 
mathematical input, used to obtain the location of the zeros, is summarized 
in the Appendix. 

2. COMPLEX T E M P E R A T U R E  PLANE ZEROS 

In terms of the reduced temperature variable 

t =- (K, .  - K ) / K c  = 1 - 2 d K  (2.1) 

the exponential in (1.4) can be written 

- d K p  2 + In cosh(2dK#) = - �89 - t) - 1g~4(1 - 0 4 + O(/~ 6) (2.2) 

For large N, and in the critical region of small Jtl, the integral in (1.4) can 
be conveniently analyzed in terms of the new "scaled" variables 

u = #(N/12) 1/4 (2.3) 

z = t ( 3 N )  */2 (2.4) 

With this rescaling, 

N( i t ,  2 1 . 4 '~  ~ - -  U 4 - -  ~- /~ - - ] ~ #  I - -Zb /2  (2.5) 

while all the other terms in (2.2), when written in terms of z and u, acquire 
extra negative powers of N and can be treated in perturbation theory. The 
leading corrections to scaling for various quantities are of re la t i ve  

magnitude N -1/2 (see Ref. 13). Thus, we have to solve for the complex-z 
zeros of the entire function 

F ( z )  =- exp( - z u  2 - u 4) du  (2.6) 

For  a complex zero z j ,  the corresponding partition function zero in the t 
plane has N dependence given, for large N, by 

tJ ~ zJ N - 1 / 2  (2.7) 

provided the zero is in the critical region of small i(i[. (We will work out 
the number of zeros that are correctly reproduced later in this section.) 

If we subtract the ground-state, all + or all - ,  energy contribution 
- f l H g  s -  d N K  from the original Ising model energy (1.1), then the par- 
tition function becomes a polynomial in some low-temperature variable, 
say e ~, which has O ( N )  zeros. Similar manipulation on the infinite-range 

822e45/3-4-7 
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partition function (1.3) can only produce a polynomial in an N-dependent 
variable, say e K/N. (A different, high-temperature, but still explicitly N- 
dependent variable was used in Ref. 12.) There are O(N 2) zeros in the 
e -  K/N plane. Thus, the analyticity and the zero structure in the e x plane is 
globally disrupted by the mean-field approximation (1.2). Specifically, the 
electrostatic analogy (5 8) may not apply globally. However, locally near T, 
(or, say, e - ~ )  there should be no problem. In fact, the expansion leading 
to (2.6) does not depend on the details of the mean-field model away from 
Tc, because the square and the quartic contributions are nothing but the 
appropriately rescaled leading-power zero-momentum terms in the 
Ginzburg-Landau-Wilson expansion, as appropriate for d > 4.(1 3) 
However, for general Ising models in higher dimensions, one must keep in 
mind that the gradient terms (nonzero-momentum order parameter com- 
ponents) induce additional corrections to scaling. (1) Thus, (2.7) must be 
interpreted as 

tj= CzjN 1/211 + O(N ~/2) + O(N (d 4)/4)] (2.8) 

where C is a nonuniversal constant, while Z/are universal numbers given 
by 

F(z) = 0 (2.9) 

For the particular model considered here, C = 3-1/2 
In the Appendix, we derive the following asymptotic formula for the 

nth zero of F(z) in the upper half-plane (Im z > 0; there is always a con- 
jugate zero at z, ). 

z =2(27rn)J/2e3~i/4I 1 ~+iln28~n 

 in2,2+2 iin2 (')1 
- 128~2n 2 t- O ~5 (2.10) 

The leading term in (2.10) is 

Z n ~ (47err)l/2( - -  1 + i) (2.11) 

so that the zeros indeed accumulate asymptotically (9) near the 45 ~ diagonal 
of the second complex-plane quadrant, approaching it from above. 
Relations (2.10) (2.11) are valid for large [z,[ and therefore describe quite 
accurately all the zeros of F(z), since already hZl[ is large. In Table ! we 
compare the first five computer-located zeros with the asymptotic formula. 
Figure 1 displays the first 11 zeros. 
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Table I. Computer-Generated versus Asymptotic-Formula (2.10) 
Zeros for n~<5 a 
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n Calculated zero Asymptotic formula 

l -2.985 + i3.206 -2.982 + i3.202 
2 -4.624 +/4.771 -4.623 +/4.770 
3 5.824 + i5.94l - 5.824 + i5.94! 
4 -6.817 + i6.918 -6.817 + i6.917 
5 -7.683 + i7.773 -7.683 + i7.772 

a Values rounded to the last digit shown. For n > 3, the asymptotic formula is more accurate 
than the computer routines we employed. 

The leading-order relation (2.11)suggests, via (2.8), 

t n oc (n /N) l / 2 ( -1  + i) (2.12) 

for large N and n. The condition for t n to remain in the critical region 
implies n = o(N). Since there are O ( N )  zeros for lattice Ising models, an 
unbounded number  of zeros can be accurately represented. 
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Fig. 1. The first 11 zeros in the upper half-plane. For n ~< 5, the computed and asymptotic 
formula values coincide to within about one-tenth of the size of the symbols. For n >~ 6, only 
asymptotic estimates are available. 
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A P P E N D I X  

The function F(z )  in (2.6) can be related to standard mathematical 
functions,(14"~s) 

F(z )  = �88 1/2 exp(z2/8) K1/4(z2/8 ) (A1) 

F(z )  = 2-s/4r?/2 exp(z2/8) D l /2(z / , , f2)  (A2) 

Here K and D denote the Bessel and the parabolic cylinder functions, 
respectively. Let us also introduce the complex-z plane notation 

z = x + iy -- re i~ (A3) 

By the general theory of the Bessel function zeros, (14) we learn that the 
zeros of F(z )  are all in rc/2<0<37c/4 (with complex conjugates in 
5~z/4< 0 < 3~/2). The leading-order relation (2.11) can be established by 
using the last, unnumbered equation of Section 15.7 of Ref. 14. The more 
elaborate approximation (2.10) requires knowledge of the asymptotic 
expansion of F(z )  for large Izl in the region of interest. This is most easily 
found from relation (A2), since the asymptotic behavior of D _ v 2  is well 
known. (15) Relation 9.246.2 from Ref. 15, when truncated to the order 
required here, reads, for D 1/2 in the region re/4 < 0 < 5rc/4, 

~ - z D 1 / 2 ( z / x / 2  ) "~ e -3/8 (1 3 ...) + + . . - /  (A4) 

where the omitted terms are of O(z  4), O(z  6), etc. By equating this to 
zero, we generate expansion (2.10). 

It is interesting to note that the essence of the leading-order result 
(2.11) is the balancing of two exponentials in (A4), which become equal in 
magnitude when z 2 is purely imaginary. 
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